1. CentroidingIdeal#
- class CentroidingIdeal(name: str, camera: Camera, sigma: ArrayWUnits = None, state_definition: list = None, sequence_definition: list = None)#
Bases:
Measurement
Models the optical ideal centroiding measurement model.
This model assumes a centroiding measurements simulated via a line-of-sight unitary vector towards the target body and using a Pinhole camera model.
- Parameters:
name (
str
) – name of the measurement modelcamera (
Camera
) – camera object from scarabaeussigma (
float
, optional) – Measurement standard deviation for both xy directions in image plane. Optional, defaults toNone
.state_definition (
list
, optional) – StateVector definition list. Optional, defaults toNone
.sequence_definition (
list
, optional) – sequence definition list. Optional, defaults toNone
.
:raises RuntimeError(
`'multiple units are extracted from the measurements.'
): | Raised when the units extracted from the measurements are not consistent with each other. :raises RuntimeError(``
’Please provide an EpochArray or provide start and end Epochs.’``:py:class:`): | Raised when the time on which to generate measurements is not an EpochArray object or is not passed as a begin and end pair.See also
scarabaeus.Measurement
parent class of each specific measurement model.
References
“A Tutorial on Horizon-Based Optical Navigation and Attitude Determination with Space Imaging Systems”, John A. Christian, IEEE-Access, Vol. 9, 19819-19853, 2021.
Attributes
The camera object taking measurements.
The instrument.
The name of the Centroiding model.
The sequence definition
The standard deviation of the measurements.
The state vector definition.
Methods
compute_h_tilde_pos
(relative_state, ...)Generate the portion in the h_tilde matrix relative to the partial of the ideal centroiding measurement model with respect to the position components.
Generates the portion in the h_tilde matrix relative to the partial of the ideal centroiding measurement model with respect to the velocity components.
compute_partials
(target, epoch_array[, frame])Stacks together measurement partials for an epoch array at different epochs.
computed_measurements
(target[, epoch_array, ...])Computes the optical navigation measurement for a given target at a specific epoch.
determine_in_fov
(target, epoch, sample, line)Checks whether the generated measurement is in the camera field of view.
generate_measurement_dataset
(dataset_name, ...)Generates a MeasurementDataSet object that can be used by filters downstream.
observed_measurements
(file_name[, ...])Reads measurements from a .json file.
partials
(target, epoch[, frame])Groups together the different components of measurement partials in the global H-tilde.
residuals
(observed_meas, computed_meas)Generates the measurement model's residuals given observed and computed ArrayWFrames.
write_observed_measurements
(target[, ...])Generates synthetic measurements and write them as a .json file.
- compute_h_tilde_pos(relative_state: ArrayWUnits, R_inertial_to_cam: ArrayWUnits) list #
Generate the portion in the h_tilde matrix relative to the partial of the ideal centroiding measurement model with respect to the position components.
- Parameters:
relative_state (
ArrayWUnits
) – The relative state between self and target.R_inertial_to_cam (
ArrayWUnits
) – The rotation matrix between inertial to camera frame.
- Returns:
partials – The 3x3 partial derivatives of the measurement model by the position components.
- Return type:
References
“Statistical Orbit Determination”, B. D. Tapley, B. E. Schutz, and G. H. Born, 2004 (pg. 161, eq. 4.2.6)
- compute_h_tilde_vel() ndarray #
Generates the portion in the h_tilde matrix relative to the partial of the ideal centroiding measurement model with respect to the velocity components.
- Returns:
partials – The 3x1 partial derivatives of the measurement model by the velocity components.
- Return type:
References
“Statistical Orbit Determination”, B. D. Tapley, B. E. Schutz, and G. H. Born, 2004 (pg. 161, eq. 4.2.6)
- compute_partials(target: ~scarabaeus.spacecraft.Spacecraft.Spacecraft, epoch_array: ~scarabaeus.timeAndFrame.EpochArray.EpochArray, frame: ~scarabaeus.timeAndFrame.Frame.Frame = J2000 (0 - SOLAR SYSTEM BARYCENTER)) list #
Stacks together measurement partials for an epoch array at different epochs.
- Parameters:
target (
Spacecraft
) – The target spacecraft.epoch_array (
EpochArray
) – The epochs.frame (
Frame
, optional) – The reference frame. Defaults to a J2000 Frame object.
- Returns:
partials – A list with all the partials evaluated at different epochs in the
epoch_array
.- Return type:
- computed_measurements(target: ~scarabaeus.body.Body.Body, epoch_array: ~scarabaeus.timeAndFrame.EpochArray.EpochArray = None, epoch_start: ~scarabaeus.timeAndFrame.EpochArray.EpochArray = None, epoch_end: ~scarabaeus.timeAndFrame.EpochArray.EpochArray = None, tstep: float = 1, frame: ~scarabaeus.timeAndFrame.Frame.Frame = J2000 (0 - SOLAR SYSTEM BARYCENTER), noisy: bool = False, prior_range_bias=None) ArrayWFrame #
Computes the optical navigation measurement for a given target at a specific epoch.
- Parameters:
target (
Body
)epoch_array (
EpochArray
, optional) – DESC. Defaults toNone
.epoch_start (
EpochArray
, optional) – DESC. Defaults toNone
.epoch_end (
EpochArray
, optional) – DESC. Defaults toNone
.tstep (
float
, optional) – DESC. Defaults to1
.frame (
Frame
, optional) – DESC. Defaults to J2000 Frame object.noisy (
bool
, optional) – DESC. Defaults toFalse
.prior_range_bias (
???
, optional) – DESC. Defaults toNone
.
- Returns:
comp_meas – The computed measurement as an array with units of inverse radians.
- Return type:
- determine_in_fov(target, epoch, sample: float, line: float) bool #
Checks whether the generated measurement is in the camera field of view. We check the direction of the z-component of the delta vector between observer and target in the camera frame. We then check the line and sample measurements against the max possible line and sample determined by the FOV.
- Parameters:
- Returns:
in_fov_flag – Flag indicating whether the target is in the camera field of view or not.
True
when the target is in the field of view,False
when it isn’t.- Return type:
- generate_measurement_dataset(dataset_name: str, measurement_type: str, target: ~scarabaeus.body.Body.Body, observed_meas: ~scarabaeus.timeAndFrame.ArrayWFrame.ArrayWFrame = None, frame: ~scarabaeus.timeAndFrame.Frame.Frame = J2000 (0 - SOLAR SYSTEM BARYCENTER), noisy: bool = False, prior_range_bias=None) list[MeasurementDataSet] #
Generates a MeasurementDataSet object that can be used by filters downstream.
- Parameters:
dataset_name (
str
) – The name of the MeasurementDataSet.target (
Spacecraft
) – The target spacecraft.epoch_list (
EpochArray
, optional) – The epochs. Defaults toNone
.epoch_start (
EpochArray
, optional) – The starting epoch. Defaults toNone
.epoch_end (
EpochArray
, optional) – The end epoch. Defaults toNone
.tstep (
int
, optional) – The integration timestep. Defaults to1
.observed_measurements (
list
, optional) – The observed measurements. Defaults toNone
.frame (
Frame
, optional) – The reference frame. Defaults to a J2000 Frame object.noisy (
bool
, optional) – Indicates if noise is added to the measurements or not. Defaults toFalse
.
- Returns:
mds_list – A list of MeasurementDataSet objects representing the measurements with their key properties to be used by a filter.
- Return type:
list[MeasurementDataSet]
Notes
The MeasurementDataSet output is generated in 6 steps:
Computed measurements
Partials
Residuals
Sigmas
Pack everything in a list
Pack the list in a MeasurementDataSet object
- observed_measurements(file_name, meas_name: str = 'meas_ideal', units: ~scarabaeus.units.Units.Units = unitless, frame: ~scarabaeus.timeAndFrame.Frame.Frame = J2000 (0 - SOLAR SYSTEM BARYCENTER)) Tuple[EpochArray, ndarray, ArrayWFrame] #
Reads measurements from a .json file.
- Parameters:
file_name (
str
) – The filename of the .json file containig the measurement information.meas_name (
str
, optional) – The name of the measurement data to access from the dictionary. Defaults to'meas_ideal'
.units (
Units
, optional) – Units to be used to write the output AWU. Defaults tounitless
.frame (
Frame
, optional) – Frame to be used to write the output AWF. Defaults to a J2000 Frame object.
- Returns:
meas_time_et, meas_sec, meas_obs – A tuple with the following values corresponding to their respective indices:
[0]
= meas_time_etEpochArrayThe time in ephemeris time.
[1]
= meas_Secnumpy.ndarrayThe times in seconds.
[2]
= meas_obsArrayWFrameAn AWF with the quantities in AWU.
- Return type:
Tuple[EpochArray
,numpy.ndarray
,ArrayWFrame]
Notes
The writing of the json assumes or requires units and frames.
- partials(target: ~scarabaeus.spacecraft.Spacecraft.Spacecraft, epoch: ~scarabaeus.timeAndFrame.EpochArray.EpochArray, frame: ~scarabaeus.timeAndFrame.Frame.Frame = J2000 (0 - SOLAR SYSTEM BARYCENTER)) list #
Groups together the different components of measurement partials in the global H-tilde. It returns the H-tilde array for the modelled measurement.
- Parameters:
target (
Spacecraft
) – The target spacecraft.epoch (
EpochArray
) – The epochs.frame (
Frame
) – The reference frame.
- Returns:
h_tilde – The H-tilde array with all measurements partials from this model by component.
- Return type:
- residuals(observed_meas: ArrayWFrame, computed_meas: ArrayWFrame) ArrayWFrame #
Generates the measurement model’s residuals given observed and computed ArrayWFrames.
- Parameters:
observed_meas (
ArrayWFrame
) – The observed measurements values (O).computed_meas (
ArrayWFrame
) – The computed measurements values (C).
- Returns:
residuals – AWF with the residual O-C.
- Return type:
- write_observed_measurements(target: Spacecraft, epoch_array: EpochArray = None, epoch_start: EpochArray = None, epoch_end: EpochArray = None, tstep: float = 1, frame: Frame = None, noisy: bool = False, prior_range_bias: float = None, file_name: str = 'ideal_measurement') None #
Generates synthetic measurements and write them as a .json file. The input of this method encapsulate the ones needed for the “computed_meas” method in each measurement model class.
- Parameters:
target (
Spacecraft
) – The target spacecraft for which the range measurement is to be computed.epoch_array (
EpochArray
, optional) – An array of epochs (times) at which the range measurements should be computed. If provided, overridesepoch_start
,epoch_end
, andtstep
.epoch_start (
EpochArray
, optional) – The starting epoch for the range measurement computations. Required ifepoch_array
is not provided.epoch_end (
EpochArray
, optional) – The ending epoch for the range measurement computations. Required ifepoch_array
is not provided.tstep (
float
, optional) – The time step, in seconds, between consecutive range measurements. If epoch_array is not provided. Defaults to1
second.frame (Frame , optional) – The reference frame in which the range computation is performed. Defaults to
None
.noisy (bool , optional) – Whether to add noise to the computed range measurement. Defaults to
False
.prior_range_bias (
float
, optional) – A prior bias value to add to the computed range measurements. Defaults toNone
.file_name (
str
, optional) – The filename of the JSON in which the measurement is saved, Defaults to'ideal_measurement'
.
- Return type:
- property instrument: Instrument#
The instrument.